Evolved Minimal Frustration in Multifunctional Biomolecules
نویسندگان
چکیده
منابع مشابه
Frustration in biomolecules.
Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of confli...
متن کاملBiosurfactants: Multifunctional Biomolecules of the 21st Century.
In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liqui...
متن کاملThe Role of Non-linearity for Evolved Multifunctional Robot Behavior
In this paper the role of non-linear control structures for the development of multifunctional robot behavior in a self-organized way is discussed. This discussion is based on experiments where combinations of two behavioral tasks are incrementally evolved. The evolutionary experiments develop recurrent neural networks of general type in a systematically way. The resulting networks are investig...
متن کاملDomain swapping is a consequence of minimal frustration.
The same energy landscape principles associated with the folding of proteins into their monomeric conformations should also describe how these proteins oligomerize into domain-swapped conformations. We tested this hypothesis by using a simplified model for the epidermal growth factor receptor pathway substrate 8 src homology 3 domain protein, both of whose monomeric and domain-swapped structure...
متن کاملNature of slow dynamics in a minimal model of frustration-limited domains.
We present simulation results for the dynamics of a schematic model based on the frustration-limited domain picture of glass-forming liquids. These results are compared with approximate theoretical predictions analogous to those commonly used for supercooled liquid dynamics. Although model relaxation times increase by several orders of magnitude in a non-Arrhenius manner as a microphase separat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry B
سال: 2018
ISSN: 1520-6106,1520-5207
DOI: 10.1021/acs.jpcb.8b03632